Олимпиадные задания по математике 9 10 11 класс с решением и ответами
Олимпиадные задания по физике 9 10 11 класс с решением и ответами
Олимпиадные задания по информатике 9 10 11 класс с решением и ответами
Олимпиадные задания по химии 9 10 11 класс с решением и ответами
Олимпиада по русскому языку 9 10 11 класс
Олимпиада по литературе 9 10 11 класс
Олимпиада по праву 9 10 11 класс
Логические задачи
Главная страница
Логические задачи
Задачи на логику
Задачи на смекалку
Занимательные задачи
Задачи на закономерности
Задачи на переливания
Задачи на определение веса
Задачи на множества
Геометрические задачи
Задачи на логику 5-7 класс
Задачи на логику 8-9 класс
Задачи на логику 10-11 класс
Олимпиадные задания по математике 4 класс
Олимпиадные задания по математике 5 класс
Олимпиадные задания по математике 6 класс
Олимпиадные задания по математике 7 класс
Олимпиадные задания по математике 8 класс
Олимпиадные задания по математике 9 класс
Олимпиадные задания по математике 10 класс
Олимпиадные задания по математике 11 класс
Решение олимпиадных заданий по математике 9 класс
Решение олимпиадных заданий по математике 10 класс
Решение олимпиадных заданий по математике 11 класс
Олимпиадные задания по физике 7 класс
Олимпиадные задания по физике 8 класс
Олимпиадные задания по физике 9 класс
Олимпиадные задания по физике 10 класс
Олимпиадные задания по физике 11 класс
Решение олимпиадных задач по физике 9 класс
Решение олимпиадных задач по физике 10 класс
Решение олимпиадных задач по физике 11 класс
Олимпиадные задания по информатике 9 класс
Олимпиадные задания по информатике 10 класс
Олимпиадные задания по информатике 11 класс
Решение олимпиадных задач по информатике 9 класс
Решение олимпиадных задач по информатике 10 класс
Решение олимпиадных задач по информатике 11 класс
Олимпиадные задания по химии 9 класс
Олимпиадные задания по химии 10 класс
Олимпиадные задания по химии 11 класс
Решение олимпиадных задач по химии 9 класс
Решение олимпиадных задач по химии 10 класс
Решение олимпиадных задач по химии 11 класс

Логические задачи с решением и ответами

Олимпиадные задания по математике физике химии информатике для 9 10 11 класса
Подробное решение всех представленных на сайте заданий олимпиад.

Олимпиадные задания для учащихся 1 - 11 классов

Логические задачи на смекалку для тренировки умственных способностей

Логические задачи на смекалку с решением и ответами.

Сколько страниц в книге?
При издании книги потребовалось 2 775 цифр для того, чтобы пронумеровать ее страницы. Сколько страниц в книге?

Ответ:   На первые 9 страниц требуется 9 цифр. С 10-й по 99-ю страницу (90 страниц) требуется 90 х 2 = 180 цифр. С 100-й по 999-ю страницу (900 страниц) требуется 900 х 3 = 2700 цифр (по 300 цифр на каждую сотню страниц с трехзначной нумерацией). Следовательно, на 999 страниц необходимо 2700 + 180 + 9 = 2889 цифр. Мы перебрали (2889 - 2775)/3 = 38 страниц. Итого: 999 - 38 = 961 страница была в книге.



Находчивый таможенник
Служащему таможни, где производился контроль отправляемых за границу товаров, показались подозрительными пластмассовые кегельные шары одной из фирм. Они весили столько же, сколько деревянные того же размера. Шары не были массивными, но стенки были повсюду одинаково тверды. Служащий подумал, что внутри каждого шара имеется полость, где можно спрятать контрабандные товары. И, действительно, при помощи очень простого опыта без применения особой аппаратуры таможенник установил, что в одном из 12 шаров спрятана контрабанда. Когда шар вскрыли, там оказалось брильянтовое украшение. Как удалось обнаружить этот шар?

Ответ:   Таможенник опустил шары в ведро с водой. Один из шаров неустойчиво покачивался на поверхности - центр тяжести его находился не в центре шара. Именно в этом шаре были спрятаны драгоценности.



Приготовление краски
Для того чтобы получить краску оранжевого цвета, необходимо смешать краски желтого цвета (6 частей) и красного цвета (2 части). Сколько грамм краски оранжевого цвета можно получить (максимально), имея в наличии 3 грамма желтой и 3 грамма красной краски?

Ответ:   Из условия задачи видно, что желтой краски требуется в 3 раза больше, чем красной. Следовательно, имея в наличии 3 грамма желтой краски, необходимо взять 1 грамм красной краски. То есть оранжевой краски при смешивании получиться 4 грамма.



Ключи и замки
Имеется три ключа от трех чемоданов с различными замками. Каждый ключ подходит только к одному чемодану. Достаточно ли трех проб, чтобы подобрать ключи к каждому из них?

Ответ:   Достаточно. Обозначим ключи буквами А, В, С, а замки М, К, Р. Тогда первая проба может дать, например, такой результат: ключ А не подходит к замку М. Это означает, что он подходит к замку К или к замку Р. Вторая проба: ключ В не подходит к замку М. Тогда ясно, что: а) ключ В подходит к замку К или к замку Р; б) к замку М подходит ключ С. Третья проба ставит все на свои места: если к замку К не подходит ключ А, то к нему подходит ключ В, а ключ А подходит к замку Р. Если же первая проба дает результат такой, что ключ А подходит к замку М, то тогда достаточно второй пробы, чтобы установить, какой из оставшихся ключей к какому замку подходит.



Стеклянные шары
Имеются: два одинаковых стеклянных шара и один 100 этажный дом. Известно что: шары начинают разбиваться при ударе о землю, падая с определенного этажа. Как определить минимальное количество сбрасываний этих шаров с различных этажей, за которые можно гарантированно найти этот самый этаж?

Ответ:   Первый шар сбрасываем (пока на разобьется) с 14-го, 27-го 39-го, 50-го, 60-го, 69-го, 77-го, 84-го, 90-го, 95-го, 99-го этажей. Если, например шар разбился при сбрасывании с 69-го этажа, то вторым шаром производим сбрасывания с этажей располагающихся в интервале между 60-м и 69-м этажами. В этом и любом другом случае, минимальное количество сбрасываний шаров будет равняться 14-ти.



Остывший кофе
Вы собрались попить кофе с молоком, и успели налить в стакан только кофе. Но вас просят отлучиться на несколько минут. Что надо сделать, чтобы при вашем возвращении кофе был горячее: налить в него молоко сразу перед уходом или после, когда вы вернетесь, и почему?

Ответ:   Скорость охлаждения пропорциональна разности температур нагретого тела и окружающего воздуха. Поэтому следует сразу несколько охладить кофе, влив в него молоко, чтобы дальнейшее остывание происходило медленнее.



Землекопы
Пять землекопов за 5 часов выкапывают 5 м канавы. Сколько потребуется землекопов, для того чтобы выкопать 100 м канавы за 100 часов?

Ответ:   Понадобятся те же пять землекопов, не больше. В самом деле, пять землекопов за 5 часов выкапывают 5 м канавы; значит, пять землекопов за 1 час вырыли бы 1 м канавы, а в 100 часов — 100 м.



Деревенский дурачок
Люди, приезжавшие в одну деревушку, часто удивлялись местному дурачку. Когда ему предлагали выбор между блестящей 50-центовой монетой и мятой пятидолларовой купюрой, он всегда выбирал монету, хотя она стоит вдесятеро меньше купюры. Почему он никогда не выбирал купюру?

Ответ:   "Дурачок" был не так глуп: он понимал, что, пока он будет выбирать 50-центоную монету, люди будут предлагать ему деньги на выбор, а если он выберет пятидолларовую купюру, предложения денег прекратятся, и он не будет получать ничего.



Кольцо вокруг Земли
Образно представьте себе нашу планету, плотно стянутую кольцом по всему ее экватору. После увеличения длины окружности кольца на 10 метров, между кольцом и поверхностью земли образовался зазор определенной величины. Как Вы считаете, сможет ли человек пройти, или хотя бы протиснуться в этот зазор?
Известно, что экватор имеет длину приблизительно равную 40 000 километров.


Ответ:   Для решения данной задачи достаточно элементарных знаний геометрии. Изначально может показаться, что увеличение длины кольца на 10 метров, по сравнению с его длиной в 40 000 км будет способствовать образованию практически незаметного зазора. Однако, исходя из формулы определения длины окружности L = 2пR видно, что радиус Земли (кольца) R = L/2?   и при увеличении длины кольца на 10м, его радиус приблизительно увеличиться на 1,59м (10м/6,28), образуя соответствующий зазор, в который человек сможет не только протиснуться, но и даже пройти, немного нагнувшись.



Кувшинки на пруду.
На поверхности пруда плавает одна кувшинка, которая постоянно делится и разрастается.
Таким образом, каждый день площадь, которую занимают кувшинки, увеличивается в два раза.
Через месяц покрытой оказывается вся поверхность пруда.
За сколько времени покроется кувшинками вся поверхность пруда, если изначально на поверхности будут плавать две кувшинки?


Ответ:   Две кувшинки покроют озеро за месяц минус один день.



Сумма чисел
В XIX веке один учитель задал своим ученикам вычислить сумму всех целых чисел от единицы до ста. Компьютеров и калькуляторов тогда еще не было, и ученики принялись добросовестно складывать числа. И только один ученик нашел правильный ответ всего за несколько секунд. Им оказался Карл Фридрих Гаусс - будущий великий математик. Как он это сделал?

Ответ:   Он выделил 49 пар чисел: 99 и 1, 98 и 2, 97 и 3 ... 51 и 49. В сумме каждая пара чисел равнялась ста, и оставалось два непарных числа 50 и 100. Следовательно, 49 х 100 + 50 + 100 = 5050.



Притягательные игрушки
В детской больнице юные пациенты очень любили играть с очаровательными плюшевыми мишками, которые были там. К сожалению, детям они так сильно нравились, что мишки стали исчезать: малолетние пациенты уносили их домой. Как руководство больницы решило эту проблему?

Ответ:   Всем мишкам сделали повязки и говорили маленьким детям, что мишкам нужно оставаться в больнице, чтобы вылечиться. Дети с грустью, но с сочувствием соглашались.



Король и премьер-министр
Один король хотел сместить своего премьер-министра, но при этом не хотел его слишком обидеть. Он позвал премьер-министра к себе, положил при нем два листка бумаги в портфель и сказал: "На одном листке я напи-сал "Уходите", а на втором — "Останьтесь". Листок, который вы вытащите, решит вашу судьбу". Премьер-министр догадался, что на обоих листках было написано "Уходите". Как же, однако, умудрился он при этих условиях сохранить свое место?

Ответ:   Премьер-министр вытащил листок бумаги и, не глядя на него, скатал из него шарик - и проглотил. Поскольку на оставшемся листке стояло "Уходите", то королю пришлось признать, что на проглоченном листке значилось "Останьтесь".



Пожар на острове
Человек находится на острове. Из-за долгой засухи трава и кусты на острове сильно пересохли. Внезапно на одном конце острова возник пожар, и ветер погнал огонь в сторону человека. Спастись в море человек не может, так как в море у самого берега плавает множество акул. Берегов без растительности на острове нет. Как человеку спастись?

Ответ:   Человеку нужно зажечь огонь на подветренной от себя стороне и немного отойти навстречу основному пожару. Ветер погонит огонь, зажженный человеком, к подветренному концу острова. Когда этот участок выгорит, человек сможет вернуться на него и спокойно ждать, пока основной пожар дойдет до этого участка и погаснет, так как гореть уже будет нечему.



Фальшивая монета
На столе лежат девять монет. Одна из них - фальшивая. Как при помощи двух взвешиваний можно найти фальшивую монету? (Фальшивая монета легче настоящих.)

Ответ:   Первое взвешивание: на каждую чашку весов кладем по три монеты. Если весы уравновешены, то для второго взвешивания берутся две из трех оставшихся монет. Если фальшивая монета на весах, то ясно, на какой она чашке весов. Если же весы уравновешены, то фальшивой является оставшаяся не взвешенная монета. Если при первом взвешивании одна из чашек перевешивает другую, то фальшивая монета находится среди монет, вес которых оказывается меньше. Тогда вторым взвешиванием устанавливаем, какая из монет фальшивая.



Производство обуви
Владельцами одной известной фирмы по производству обуви, было внедрено довольно необычное оригинальное решение, согласно которому в одном городе на обувной фабрике изготавливались только правые ботинки, а в другом городе - только левые. Благодаря этому внедрению, фирма смогла значительно снизить некоторые свои убытки. Что, по Вашему мнению, приносило фирме эти убытки?

Ответ:   Воровство обуви (пар обуви) рабочими с фабрик.



Необычное предложение
Что необычного в предложении "The quick brown fox jumps over the lazy dog"? (Перевод: быстрая коричневая лиса перепрыгнула через ленивую собаку).

Ответ:   Это предложение содержит все буквы английского алфавита.



Назадачливый рыбак
Один рыбак купил себе новую удочку длиной 5 футов. Домой ему приходиться добираться общественным транспортом, в котором правилами запрещено перевозить предметы длиной более 4-х футов. Как необходимо упаковать удочку, чтобы проехать в общественном транспорте не нарушая правил?

Ответ:   Удочку необходимо упаковать в коробку длиной 4 фута и шириной 3 фута (расположить по диагонали коробки).



Переправа через реку
Отец с двумя сыновьями отправился в поход. На их пути встретилась река, у берега которой находился плот. Он выдерживает на воде или отца, или двух сыновей. Как переправиться на другой берег отцу и сыновьям?

Ответ:   Вначале переправляются оба сына. Один из сыновей возвращается обратно к отцу. Отец перебирается на противоположный берег к сыну. Отец остается на берегу, а сын переправляется на исходный берег за братом, после чего они оба переправляются к отцу.



Взвешивание крупы
Имеется 9 кг крупы и чашечные весы с гирями в 50 г и 200 г. Попробуйте в три приема отвесить 2 кг этой крупы.

Ответ:   Нужно развесить крупу на две равные части по 4,5 кг; затем развесить одну из этих частей еще раз пополам, то есть по 2,25 кг, и от одной из этих частей отнять при помощи двух имеющихся гирь 250 г. Таким образом, Вы получите вес в 2 кг.



Новые таблички
В одном городе построили новый район из 100 домов. Мастера по изготовлению табличек изготовили и привезли пачку новых табличек с нумерацией домов от 1 до 100. Сосчитайте количество всех цифр 9 встречающихся в этих табличках (цифры 9 и 6 являются разными цифрами).

Ответ:   Правильный ответ - 20 девяток.



Кто изображен на портрете?
Один джентльмен, показывая своему другу портрет, нарисованный по его заказу одним художником, сказал: "У меня нет ни сестер, ни братьев, но отец этого человека был сыном моего отца".
Кто был изображен на портрете?


Ответ:   На портрете изображен сын этого джентльмена.



Коробки с конфетами
Пете и Коле купили по коробке конфет. В каждой коробке находится 12 конфет. Петя из своей коробки съел несколько конфет, а Коля из своей коробки съел столько конфет, сколько осталось в коробке у Пети. Сколько конфет осталось на двоих у Пети и Коли?

Ответ:   12 конфет.



Школьный инспектор
Инспектор, проверявший некую школу, заметил, что, когда бы он ни задал классу вопрос, в ответ тянули руки все ученики. Более того, хотя школьный учитель каждый раз выби-рал другого ученика, ответ всегда был правильным. Как это получалось?

Ответ:   Учитель предварительно договорился с учениками, чтобы они вызывались отвечать независимо от того, знают ответ или не знают. Но те, кто знает ответ, должны под-нимать правую руку, а те, кто не знает, - левую. Учитель каждый раз выбирал другого ученика, но всегда того, кто поднимал правую руку.



Еще задачи на логику >>>


              Яндекс.Метрика                  

Логические задачи - www.fizmatolimp.ru         Copyright © All rights reserved    

 
^Наверх^